I/O and the DOE Office of Science

Rob Ross

Mathematics and Computer Science Division

Argonne National Laboratory

Applications

- Simulation (astrophysics, climate, etc.)
 - Input dataset I/O
 - Checkpointing
 - Visualization
- Searching (biology, experimental physics)
 - Growing needs here
 - Less traditional interfaces

Graphic from J. Tannahill, LLNL

	A 10 10 10 10 10 10 10 10 10 10 10 10 10	10 Density (g)	No. of the last of	B
1.4×10 ⁵				7
1.2×10 ⁵			-	- 6
1.2×10 E				3
1.0×10 ⁵				4
E				3
E 8.0×10 ⁴				- 2
H				
6.0×10 ⁴	WWW.			- 0
4.0×10 ⁴				
	4			
2.0×10 ⁴				
COMMUNICATION OF				Opposition of the last
0	5.0×104	1.0×10 ³	1.5×10 ⁵	2.0×10 ⁵
time = 30.012 µs		r (cm)		

Graphic from A. Siegel, ANL

Application	Reading and Generation	Post-processing, Checkpointing	Analysis
Astrophysics	20-200	20-200	20
Supernova	20	2	2
Climate Modeling	2	2	1
Cosmology	5	1	1
Fusion	1,000	1	0.5

Example: ASCI/Alliance FLASH

- FLASH is an astrophysics simulation code from the ASCI/Alliance Center for Astrophysical Thermonuclear Flashes
 - Fluid dynamics code using adaptive mesh refinement (AMR)
 - Runs on systems with thousands of nodes
- Three layers of I/O software between the application and the I/O hardware
 - Processes write regions of variables using PnetCDF
 - PnetCDF converts data to portable format and calls appropriate MPI-IO collectives
 - 3) MPI-IO optimizes writing of data to PFS using whatever interface is available
 - PFS handles moving and storing data and maintaining file metadata

ASCI FLASH

Parallel netCDF

MPI-IO

Parallel File System

Storage

- Ghost cell
- Element (24 vars)3D FLASH Block

What Constitutes "Effective" I/O?

- Providing performance is only one piece!
- Three metrics on which we measure success:
 - Usability How well I/O interfaces map to application data models and access patterns
 - Solutions are unique to HPC
 - Performance and scalability How well our I/O systems are tuned for common application patterns (e.g. concurrent access, noncontiguous access) and metadata access
 - Reliability and management How much maintenance our parallel I/O systems require, how well they handle failures

Current Research Efforts

- Scientific Data Management SciDAC
 - ANL, LBNL, ORNL, LLNL, NCSU, NWU, SDSC, others
- PVFS2 file system and ROMIO MPI-IO implementation
 - ANL, Clemson, OSC, OSU, NWU
- Lustre
 - Cluster File Systems, LLNL, PNNL, others?
- LWFS
 - Sandia, UNM

Perceived Needs

- Scaling to ever larger systems
 - Improved caching, read-ahead, write-behind
 - Better collective I/O and data layout
 - Enhanced interfaces to file systems
 - New approaches to name space and metadata management
- Functionality to match new application domains
 - Filtering/processing within the storage system (active storage)
 - Efficient search/query capabilities
- Resiliency and easy management
 - Autonomic storage
 - Enhanced redundancy (while maintaining performance)

Short-Term Directions

- Interfaces
 - POSIX I/O Extensions for HPC
 - NFSv4 and pNFS
- Communication and Intelligence in the I/O system
 - Infrastructure for developing active and autonomic storage
 - Migration, virtualization
- Caching
 - Leveraging other system components (e.g. interconnects, MPI)
 - Where does caching belong?
- Benchmark development
 - Revisit the question of "what do applications do?"
 - Create simulations for use in system R&D
 - HPC I/O Challenge Benchmark?

Long-Term Directions

- Autonomic storage
 - Mechanisms and policies
 - Leveraging vast redundancy scheme work
- Active, special-purpose storage
 - Targeting specific application domains
 - Leveraging high-level library work (for usability)
- New storage organizations
 - Sub-files, (true) object storage, alternatives to treebased namespaces, ...
 - Integration with archival storage